Defect chemistry, surface structures, and lithium insertion in anatase TiO2.
نویسندگان
چکیده
Atomistic simulation techniques are used to investigate the defect properties of anatase TiO(2) and Li(x)TiO(2) both in the bulk and at the surfaces. Interatomic potential parameters are derived that reproduce the lattice constants of anatase, and the energies of bulk defects and surface structures are calculated. Reduction of anatase involving interstitial Ti is found to be the most favorable defect reaction in the bulk, with a lower energy than either Frenkel or Schottky reactions. The binding energies of selected defect clusters are also presented: for the Ti(3+)-Li(+) defect cluster, the binding energy is found to be approximately 0.5 eV, suggesting that intercalated Li ions stabilize conduction band electrons. The Li ion migration path is found to run between octahedral sites, with an activation energy of 0.45-0.65 eV for mole fractions of lithium in Li(x)TiO(2) of x < or = 0.1. The calculated surface energies are used to predict the crystal morphology, which is found to be a truncated bipyramid in which only the (101) and (001) surfaces are expressed, in accord with the available microscopy data. Calculations of defect energies at the (101) surface suggest that single Ti(3+) defects and neutral Ti(3+)-Li(+) pairs tend to segregate to the surface.
منابع مشابه
The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile
In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based o...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملPhase stability frustration on ultra-nanosized anatase TiO2
This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to ...
متن کاملIso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage
A major obstacle in realizing Na-ion batteries (NIBs) is the absence of suitable anode materials. Herein, we firstly report the anatase TiO2 mesocages constructed by crystallographically oriented nanoparticle subunits as a high performance anode for NIBs. The mesocages with tunable microstructures, high surface area (204 m(2) g(-1)) and uniform mesoporous structure were firstly prepared by a ge...
متن کاملHigh-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.
Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 20 شماره
صفحات -
تاریخ انتشار 2006